Analysis of DNA binding and nucleotide flipping kinetics using two-color two-photon fluorescence lifetime imaging microscopy.

نویسندگان

  • Tom Robinson
  • Prashant Valluri
  • Gordon Kennedy
  • Alessandro Sardini
  • Christopher Dunsby
  • Mark A A Neil
  • Geoff S Baldwin
  • Paul M W French
  • Andrew J de Mello
چکیده

Uracil DNA glycosylase plays a key role in DNA maintenance via base excision repair. Its role is to bind to DNA, locate unwanted uracil, and remove it using a base flipping mechanism. To date, kinetic analysis of this complex process has been achieved using stopped-flow analysis but, due to limitations in instrumental dead-times, discrimination of the "binding" and "base flipping" steps is compromised. Herein we present a novel approach for analyzing base flipping using a microfluidic mixer and two-color two-photon (2c2p) fluorescence lifetime imaging microscopy (FLIM). We demonstrate that 2c2p FLIM can simultaneously monitor binding and base flipping kinetics within the continuous flow microfluidic mixer, with results showing good agreement with computational fluid dynamics simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-photon fluorescence lifetime imaging microscopy of macrophage-mediated antigen processing.

Two-photon fluorescence lifetime imaging microscopy was used noninvasively to monitor a fluorescent antigen during macrophage-mediated endocytosis, intracellular vacuolar encapsulation, and protease-dependent processing. Fluorescein-conjugated bovine serum albumin (FITC-BSA) served as the soluble exogenous antigen. As a relatively nonfluorescent probe in the native state, the antigen was design...

متن کامل

Imaging intracellular signaling using two-photon fluorescent lifetime imaging microscopy.

The recent development of Förster resonance energy transfer (FRET) sensors and FRET imaging techniques permits visualization of the dynamics of intracellular signaling events with high spatiotemporal resolution. In particular, fluorescence lifetime imaging in combination with two-photon laser-scanning microscopy (two-photon fluorescence lifetime imaging microscopy [2pFLIM]) is a powerful tool t...

متن کامل

Multilayer Microcapsules for FRET Analysis and Two-Photon-Activated Photodynamic Therapy.

Microcapsules obtained by layer-by-layer assembly provide a good platform for biological analysis owing to their component diversity, multiple binding sites, and controllable wall thickness. Herein, different assembly species were obtained from two-photon dyes and traditional photosensitizers, and further assembled into microcapsules. Fluorescence resonance energy transfer (FRET) was shown to o...

متن کامل

Characterization of two-photon excitation fluorescence lifetime imaging microscopy for protein localization.

Two-photon excitation fluorescence resonance energy transfer (2P-FRET) imaging microscopy can provide details of specific protein molecule interactions inside living cells. Fluorophore molecules used for 2P-FRET imaging have characteristic absorption and emission spectra that introduce spectral cross-talk (bleed-through) in the FRET signal that should be removed in the 2P-FRET images, to establ...

متن کامل

Advanced microscopy solutions for monitoring the kinetics and dynamics of drug-DNA targeting in living cells.

Many anticancer drugs require interaction with DNA or chromatin components of tumor cells to achieve therapeutic activity. Quantification and exploration of drug targeting dynamics can be highly informative in the rational development of new therapies and in the drug discovery pipeline. The problems faced include the potential infrequency and transient nature of critical events, the influence o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical chemistry

دوره 86 21  شماره 

صفحات  -

تاریخ انتشار 2014